Formulas for abbreviated multiplication. Formula for the cube of a binomial - (a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3
We continue with the next of the abbreviated multiplication formulas (a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3. Let's look at some problems to illustrate some of its applications.
Problem 1 Perform the grading (x+2)^3.
Solution: To solve this problem we will apply the formula (a+b)^3=a^3+3a^2b+3ab^2+b^3, where in our case a=x and b=2, so we get (x+2)^3=x^3+3x^2.2+3x.2^2+2^3=x^3+6x^2+12x+8.
Problem 2 Perform the (2m-3n)^3 grading.
Solution: (2m)^2.3n+3.(2m).(3n)^2-(3n)^3=8m^3-36m^2n+54mn^2-27n^3.
3 Problem Perform the grading (3t+z^2)^3
Solution: To solve this problem we will apply the formula (a+b)^3=a^3+3a^2b+3ab^2+b^3, where a=3t and b=z^2, hence (3t+z^2)^3=(3t)^3+3. (3t)^2.z^2+3.(3t)(z^2)^2+(z^2)^3=27t^3+27t^2z^2+9z^4t+z^6.
4 Problem Simplify the expression (x+1)^3-2(x-1)^2.
Solution: Notice that the expression we need to simplify involves two of the shortcut multiplication formulas (a+b)^3=a^3+3a^2b+3ab^2+b^3 and (a-b)^2=a^2-2ab+b^2, the latter of which we have discussed in detail here. We apply them and obtain (x+1)^3-2(x-1)^2=x^3+3x^2+3x+1-2(x^2-2x+1)=x^3+3x^2+3x+1-2x^2+4x-2=x^3+x^2+7x-1.
5 Problem Simplify the expression (3x+2)^3-3x(3x+1)(3x-1)-(3x+2)(x+4)
Solution: We apply the formulas (a+b)^3=a^3+3a^2b+3ab^2+b^3 and (a-b)(a+b)=a^2-b^2, which we have already covered here, and multiply the product (3x+2)(x+4) by the "any by any" rule, следователно (3x+2)^3-3x(3x+1)(3x-1)-(3x+2)(x+4)=9x^3+54x^2+32x+8-3x(9x^2-1)-(3x^2+12x+2x+8)=9x^3+54x^2+32x+8-27x^3+3x-3x^2-14x-8=-18x^3+51x^2+21x.
6 Problem Perform the indicated operations (a-1)^3-(a+1)^3-(a+1)(a-1).
Solution: We apply the formulas (a\pm b)^3=a^3\pm 3a^2b+3ab^2\pm b^3 and (a-b)(a+b) and obtain that (a-1)^3-(a+1)^3-(a+1)(a-1)=a^3-3a^2+3a-1-(a^3+3a^2+3a+1)-(a^2-1)=a^3-3a^2+3a-1-a^3-3a^2-3a-1-a^2+1=-7a^2-1.
7 Problem Represent a quadratic as the cube of a binomial x^3-12x^2+48x-64.
Solution: Notice in the given polynomial that 12x^2=3.4.x^2, 48x=3.16.x and 64=4^3, therefore we can write this polynomial in the form x^3-3.x^2.2^2+3.x.4 ^2-4^3, now when we substitute in the right hand side of the formula (a-b)^3=a^3-3a^2b+3ab^2-b^3 a=x and b=4, we get that x^3-3.x^2.2^2+3.x.4^2-4^3=(x-4)^3. This is how we represented the given quadratic as a cube of a binomial.
8 Problem Determine the value of the expression (x+1)^3-(x-1)(x+1)-x(x+1)^2, given x=\frac{1}{2}.
Solution: Apply the formulas (a+b)^3=a^3+3a^2b+3ab^2+b^3, (a-b)(a+b)=a^2-b^2, and (a+b)^2=a^2+2ab+b^2, therefore (x+1)^3-(x-1)(x+1)-x(x+1)^2=x^3+3x^2+3x+1-(x^2-1)-x(x^2+2x+1)=x^3+3x^2+3x+1-x^2+1-x^3-2x^2-x=2x+2. Now we calculate the value of the expression for x=\frac{1}{2} and get 2.\frac{1}{2}+2=3.
Homework assignments
1. Perform the grading:
a) (2x+1)^3; b) (2m-2n)^3; c) (\frac{1}{3}a+\frac{1}{3}b)^3; d) (3-y^2)^3; e) (a-b+c)^3.
2. Simplify the expression:
а) (2x+5)^3-2x(2x-3)^2-5(2x+25);
б) (y+2)^3+(2y+x-3)-(-x+3)^2+(-y-2)^3;
c) t(t-3)^2-(t-1)^3;
3. Prove that the value of the expression (x+2)^3-6(x+1)(x-1)-3(4x+1)-x^3 is independent of the value of x.
4. Find the numerical value of the expression:
a) (2x+1)^3-8x(x+1)(x-1)-6x(2x-3), with x=(-\frac{1}{2})^5;
b) x(x-2)-(x-2)^3 at x=-1; c) 6t^2+(t-2)^3-t^3 at t=\frac{2}{3};
d) b(b-1)(1+b)+(-b-1)^3+b at b=-^frac{1}{3}; e) z(z-1)(1+z)+(-z-1)^3 at z=(-1)^{303}.
5. For which value of the parameter c the coefficient in front of x^2 in the normal form of the polynomial that is equal to the expression A=(c-2x)^3-x(x-c) is equal to 22.
6. For which value of the variable is the numerical value of the expression:
a) (4-y)y(4+y)+(y-2)^3+6y^2 is equal to 20; b) x(x-1)^2-(x-1)^3-x^2 is equal to -3;
7. Find the smallest value of the expression (2+x)^3-3x(\frac{x^2}{3}+4)+(3-x)(3+x).
8. Find the largest value of the expression (y-3)^3-3y(9+\frac{y^2}{3})-(y+6)(y-6).
9. Find the normal polynomial identical to the expression:
а) (a^2-3)^3-(a-2)(a^2+4)(a+2)-a^4(a^2-10);
b) (2a-3b)^3-(a+2b)^3+7a^2(6b-a);
c) (2a-3)^3-(2-3a)^3-35a^3+90a^2;
d) (\frac{1}{2}x+2y)^3-(2x-\frac{1}{2}y)^3+7\frac{7}{8}x^3-7\frac{1}{2}x^2y;
e) x^3+3x^2(x-2)+3x(x-2)^2+(x-2)^3;
f) (a-b)^3+3(a-b)^2(b-c)+3(a-b)(b-c)^2+(b-c)^3;
g) (2x-m)^3-3(2x-m)^2(y-m)+3(2x-m)(y-m)^2-(y-m)^3.
Коментари
Публикуване на коментар